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Algorithm for Hierarchical Multi-way Divisive Clustering
of Document Collections

Kazuaki KISHIDA1,a)

Abstract: This paper proposes a novel algorithm of hierarchical divisive clustering, which generates a multi-branch
tree, not a binary one, as its output. In order to use the algorithm for clustering large document sets, a spherical k-
means clustering algorithm based on a cosine measure is adopted for partitioning recursively the document set from
the top to bottom. Also, by selecting automatically the number of clusters in each partitioning according to a criterion,
an optimal multi-way branching is determined for each node of the tree. This paper reports an experimental result
indicating the effectiveness of the proposed algorithm.

1. Introduction
Tree structures generated by applying a hierarchical clustering

algorithm to a document collection (e.g., a set of research arti-
cles or web documents) are often useful for applications in in-
formation retrieval (IR) and related areas. For instance, if a set
of web documents is obtained by entering a query into a search
engine, then hierarchical clustering of the set (i.e., a dendrogram)
would help the user specify a suitably-sized subset of relevant
documents.
However, when the target document set is large, the com-

putational complexity of hierarchical agglomerative clustering
(HAC), which is widely used in various areas, becomes very high.
In such cases, an algorithm for hierarchical divisive clustering
(HDC) may be suitable because its complexity is expected to be
lower if the resulting dendrogram is well balanced.
Typically, the entire set is partitioned at first into two parts by a

k-means algorithm, and recursively, each part is split by a similar
procedure, which is usually called ‘bisecting k-means’ clustering
(Steinbach et al., 2000 [87]; Zhao & Karypis, 2002 [111]). Also,
the ‘principal direction divisive partitioning (PDDP)’ (Boley et
al., 1999 [13], [14]) is a well-known hierarchical divisive cluster-
ing algorithm, in which each document set is split based on the
result of principal component analysis (PCA).
This paper attempts to explore a hierarchical divisive cluster-

ing algorithm allowing each document set (i.e., node of a tree) to
be partitioned into two or more parts. Since the algorithm for hi-
erarchical multi-way divisive clustering (HMDC) is more flexible
than those that divide each node always into just two parts, more
valid results are expected to be obtained by the HMDC algorithm.
Particularly, as its component, the spherical k-means (spk-means)
algorithm (Dhillon & Modha, 2001 [31]) based on a cosine value
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of two vectors for measuring similarity between two documents
is used for the partitioning operation, and the optimal number of
clusters in each partitioning is determined by using the ratio of
within-cluster dispersion to total dispersion computed from the
result of the cosine-based spk-means clustering.
In the next section, the HMDC algorithm is explained. Section

3 reports the results of an experiment confirming the effectiveness
of the HMDC algorithm. A set of 6,374 articles extracted from
the RCV1 test collection (Lewis, et al., 2004 [61]) was used in
the experiment. After discussing the experimental results, some
related papers are reviewed.

2. Hierarchical Multi-way Divisive Clustering
2.1 Outline of the algorithm
The basic procedure of the HMDC is to divide each set of doc-

uments into two or more parts, which is repeated recursively from
the entire set until a full dendrogram whose leaf node at the bot-
tom corresponds to a document (i.e., singleton) is generated. Oth-
erwise, the recursive partitioning can be terminated in a node ac-
cording to a stopping rule when a sufficiently homogeneous clus-
ter is obtained. In the experiment described below, the stopping
rule was used to assess directly the validity of clustering results
by external evaluation metrics.
For the partitioning, the spk-means clustering algorithm is used

as described above, and the number of parts in each partitioning
is determined based on the ratio of within-cluster dispersion to
total dispersion (see below).

2.2 Executing k-means clustering
In this paper, term frequency is adopted as the element of doc-

ument vectors, each of which is always normalized into a unit
vector such that vi = di/||di|| where di = [xi1, . . . , xi j, . . . , xiM]T
and xi j denotes the occurrence frequency of term t j in document
di (i = 1, . . . ,N; j = 1, . . . ,M). Also, a vector of cluster Ck is
computed as
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ck =
∑

i:di∈Ck
vi . (1)

According to the standard IR theory, similarity between a docu-
ment and a cluster is measured by the cosine coefficient such that
cos(di, ck) = dTi ck/(||di|| · ||ck ||) = vTi ck/||ck ||.
In order to execute the spk-means clustering based on the vec-

tors, the present experiment employed a modified version of the
Hartigan-Wong algorithm in which the Euclidean distance is re-
placed with the cosine similarity (see the appendix in Kishida
(2014) [57]).

2.3 Determining the number of parts
For partitioning each node into two or more parts, the number

of parts (i.e., clusters) has to be automatically determined within
the procedures of the HMDC algorithm. Generally, this is a prob-
lem of estimating the optimal number of clusters or segments for
a given data set, which is not easy to solve. So, many techniques
or methods have been proposed (see Section 5.2).
In the case of partitioning medium or large document sets, a

computationally efficient method is desirable. Also, it is diffi-
cult to assume a probabilistic model such as the Gaussian mixture
model for large-scale document clustering. So, rather than using
resampling-based methods or model selection techniques, this pa-
per attempts to determine the number of clusters based on a clus-
tering validity indicator like Caliński and Harabasz’s index (CH
index) [17] which is the ratio of the total within-cluster sum of
squared distances about the centroids to the total between-cluster
sum of squared distances (Gordon, 1999 [43]).
Since the CH index is defined based on the Euclidean distance,

it is necessary to modify it slightly for the cosine similarity. When
documents are partitioned into some clusters, the total sum of
similarities between all pairs of documents, which is denoted by
T0, can be computed as

T0 =
N∑

i=1

∑

h:dh∈C[di]
vTi vh +

N∑

i=1

∑

h:dh�C[di]
vTi vh ≡ T1 + T2, (2)

where C[di] denotes a cluster including di. Namely, the first part
T1 is the sum of similarities between two documents in a same
cluster, and the second part T2 is the sum of similarities between
two documents which belong to different clusters.
So, the proportion of T1 explained by clusters inherent in the

set (i.e., =T1/(T1 + T2)) can be reasonably employed as an indi-
cator of ‘goodness’ of the clustering operation because a cluster
should be “a set of entities which are alike, and entities from dif-
ferent clusters are not alike” (Xu & Wunsch II, 2009 [105] p.4).
One serious problem preventing its actual use is the high com-
plexity of computing T1 and T2, for which the inner product of
O(N2) pairs has to be calculated as explicitly suggested by Equa-
tion (2).
In order to overcome this problem, this paper computes ap-

proximately T1 and T2 as

W(L) =
L∑

k=1

∑

i:di∈Ck
vTi ck/||ck || , and (3)

B(L) =
L∑

k=1

∑

i:di�Ck

vTi ck/||ck || , (4)

respectively where L indicates the number of clusters. Therefore,
a criterion for selecting the optimal number of clusters is naturally
derived as

H(L) =
W(L)

W(L) + B(L)
. (5)

More precisely, for a particular document set, the spk-means
clustering is repeated with various values of L (e.g., L =
2, . . . , 10), and a partition with

L′ = argmax
L
H(L) = argmax

L
W(L)/[W(L) + B(L)] (6)

can be selected as the final result, and L′ is considered to be the
optimal number of clusters for the set. Namely, in the HMDC
algorithm, each document set corresponding to a node of the tree
is divided into L′ parts defined in Equation (6) after Lmax − 1
executions of the spk-means clustering by varying L such that
L = 2, . . . , Lmax (note that Lmax = 10 in the experiment described
below).

2.4 Terminating recursive partitioning
Automatic termination of recursive partitioning in HDC is also

a difficult problem, to which some techniques for estimating the
optimal number of clusters reviewed in Section 5.2 may be ap-
plied. However, this paper does not explore this research issue
deeply, and the experiment adopted the simple stopping rule that
“if H(L′) > θ, then the document set is treated as a final clus-
ter (i.e., a leaf node in the tree), and the recursive partitioning in
the branch is stopped” where θ is a threshold, which means that a
value of θ has to be provided a priori before executing the HMDC
algorithm.
Generally, when stopping the recursive partitioning based on

a predetermined threshold, the number of objects in each cluster,
the within-cluster dispersion or the diameter of each cluster can
be used (e.g., see Guenóche et al., 1991 [44], Savaresi et al., 2002
[85] and so on). This paper assumes that the document set is suf-
ficiently homogeneous when the value of H(L′) is high, which is
naturally derived from discussions of this section.

3. Experiment
3.1 Purpose
In the experiment, the effectiveness of the HMDC algorithm

was compared to that of bisecting k-means clustering and non-
hierarchical (standard) k-means clustering. The algorithm for bi-
secting k-means clustering in this experiment was the same as
that of the HMDC except that L′ was always assumed to be two
(the same stopping rule was applied). For the non-hierarchical
k-means clustering, the spk-means algorithm was used with the
predetermined number of clusters (see below).

3.2 Document dataset
The Reuter corpus RCV1 [61] created as a test collection for

text categorization was used to measure effectiveness of each al-
gorithm. Since one or more topic codes are assigned to each
record of the corpus, which can be considered as ‘answers’ of
clustering, the validity of clusters generated by the algorithms can
be assessed based on the topic codes (note that the topic codes
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Table 1 Effectiveness of clustering algorithms

Methods θ # of clusters nMI ARI BCubed-F
HMDC 0.60 4 0.163 0.118 0.246
(Lmax = 10) 0.65 102 0.518 0.399 0.464

0.70 414 0.410 0.101 0.312
0.75 859 0.377 0.074 0.240
0.80 1692 0.353 0.041 0.206

Bisecting 0.60 8 0.064 0.029 0.130
(L′ = 2) 0.65 18 0.100 0.028 0.119

0.70 36 0.139 0.032 0.104
0.75 81 0.161 0.030 0.099
0.80 184 0.182 0.031 0.086
0.85 411 0.213 0.033 0.077
0.90 1031 0.254 0.028 0.063

K-means 68 0.439 0.189 0.268
(non-hierarchical) 102 0.417 0.141 0.221

were used only for evaluation). Particularly, as a test dataset for
this experiment, a set of 6,374 records to which just a single topic
code is assigned was extracted from news articles published dur-
ing August 1996 (i.e., N = 6374) because evaluation of cluster-
ing results including multi-topic documents becomes too compli-
cated. In total, 68 different topic codes appear in the 6,374 records
(see Kishida, 2011 [55] for the topic codes).

3.3 Indexing
By standard text processing which consists of tokenization,

removing stopwords and stemming by Porter’s algorithm, doc-
ument vectors for clustering were generated from the records. As
described above, term frequency was simply used as the element
of document vectors, and instead of incorporating the idf factor
into the element, non-specific terms appearing in more than 10%
of all documents (i.e., over 647 documents) were removed from
all document vectors. Also, terms appearing in only one docu-
ment were not adopted as features for clustering. As a result, in
total, 22,503 different terms were included in the set of document
vectors and the average document length amounted to 112.10.

3.4 Evaluation metrics
According to a suggestion by Kishida (2014) [57], the ex-

periment employed three external evaluation metrics: nMI (nor-
malized mutual information), ARI (adjusted Rand Index) and
BCubed-F. Note that normalization of MI was based on the max-
imum of entropy scores of two marginal distributions.

3.5 Results
Table 1 indicates values of the three evaluation metrics for clus-

tering results, and the number of remaining nodes (i.e., final clus-
ters) when the recursive partitioning stopped in all nodes, which
is referred as “# of clusters”. Clearly, it was empirically shown
that the HMDC outperformed the bisecting. For example, when
θ = 0.65, a very good result, the three metrics of which were
0.518, 0.399 and 0.464 respectively, was obtained by the HMDC.
In contrast, values of metrics for results by the bisecting k-means
clustering were relatively lower as Table 1 indicates.
Also, the effectiveness of the HMDC would be higher than

that of non-hierarchical k-means clustering. In the experiment,
when the non-hierarchical k-means clustering was executed with
L = 68 (the number of ‘true’ clusters) and L = 102 (the number
of clusters in the best case of the HMDC within the experiment),
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Fig. 1 Dendrogram by HMDC (at the best case, θ = 0.65)

their values of the evaluation metrics did not exceed those of the
HMDC with θ = 0.65.
Figure 1 is a portion of a dendrogram obtained by the HMDC

algorithm with θ = 0.65, which shows a tree structure in top four
levels while the total number of levels was 16. The number in
each node indicates the number of documents included in its sub-
set.

4. Discussion
The experiments showed that the HMDC was more effective

than top-down bisecting, which is not surprising because the
HMDC is more flexible due to multi-way branching. Rather,
the results in Table 1 should be interpreted as indicating the suc-
cess of estimating automatically the number of subsets inherent
in each node. However, whether the indicator H(L) in Equation
(6) is the best or not is unclear, and further research is needed.
On the other hand, it is clearly difficult to select an appropriate

threshold in the stopping rule. Namely, clustering results varied
largely with different values of the threshold in the experiment
(see Table 1). Although further improvement of it may be neces-
sary for obtaining a good result from the HMDC algorithm, the
stopping rule is not needed actually when a ‘full’ dendrogram
whose leaf node is a single document has to be generated.

5. Related Work
5.1 Divisive partitioning
When the target set including n data points (e.g., documents)

is partitioned into two nonempty subsets, there are many possi-
ble divisions of them, which is computationally expensive [105].
Therefore, without examining every possible division, a partition-
ing algorithm with less computational complexity is usually used
to obtain two approximately valid subsets. Although it may ap-
pear that an algorithm for k-means clustering is usually employed
for it, namely ‘bisecting k-means’ clustering (e.g., [87], [111]),
actually other algorithms for flat partitioning such as a finite mix-
ture model, nonnegative matrix factorization (NMF) and so on
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are also available.
Among them, principal component analysis (PCA) has often

been applied to hierarchical divisive clustering of document col-
lections, which is called ‘principal direction divisive partitioning
(PDDP)’ (Boley et al., 1999 [13], [14]). In each step of the PDDP,
documents contained in a set are classified into two parts depend-
ing on whether the first component score is positive or negative.
Also, in the NGPDDP (non-greedy version of PDDP) algorithm
(Nilsson, 2002 [73]), components other than the first one can be
selected for the partitioning according to a criterion on the vari-
ance of a set of clusters, and the PDDP(l) algorithm (Zeimpekis
& Gallopoulos, 2003 [108]) tries to classify the target set into 2l

parts in each stage where l ≥ 1. Another extension of the PDDP
algorithm is to use kernel PCA, which is a nonlinear version of
PCA; the algorithm is called KPDDP(l) (Zeimpekis & Gallopou-
los, 2008 [109]). More recently, Tasoulis et al.(2010) [91] ex-
plored intensively criteria for selecting a cluster to be split, meth-
ods for splitting it, and stopping rules in the PDDP algorithm.
Other than k-means clustering and the PDDP, Cheng et

al.(2006) [23] used a spectral clustering algorithm for dividing
the target cluster in their procedure combining top-down parti-
tioning and bottom-up merging, while Feng et al.(2010) [35] used
an improved discrete particle swarm optimizer, which is a genetic
algorithm for clustering, to divide the target node.

5.2 Estimating the optimal number of clusters
5.2.1 Types of estimation
The optimal number of clusters, which is denoted by L′, can be

selected from several values based on a criterion or rule, or can be
determined based on an objective function built into a clustering
algorithm. Otherwise, the number of clusters may be posteriorly
defined as an output from a clustering algorithm dependent on
a threshold, or resampling-based methods providing the number
of clusters inherent in a dataset have also been applied. Mirkin
(2011) [70] reviewed exhaustively algorithms or methods for es-
timating the optimal number of clusters, and Mirkin (2013) [71]
provided another overview of them.
5.2.2 Criterion for selection
When selecting L′ from several values (i.e., L = 2, . . . , Lmax)

based on a criterion, a clustering operation is repeated with indi-
vidual values of L and the value that provides the clustering result
with the minimum (or maximum) score of the criterion is chosen
as L′ (see Equation (6)). Since the minimum score means the
optimal one in the case of Euclidean distance, L′ corresponds to
an ‘elbow’ in a curve which is obtained by plotting the criterion
scores (on the y-axis) against the values of L (on the x-axis).
Because the within-cluster dispersion, which is often used as

an evaluation metric of clustering, decreases monotonically as
L increases, the criteria are often computed from a combina-
tion of within- and between-cluster dispersion like Caliński and
Harabasz’s index (CH index) [17]. Actually, Milligan & Cooper
(1985) [68] reported a result of empirical comparison between 30
classical criteria proposed before the mid-1980s, most of which
are based on between- and within-cluster dispersion measured
in the Euclidean space such as the CH index, Hartigan’s statis-
tic (Hartigan, 1975 [47]) and so on. After that, Hardy(1996)

[46] compared experimentally seven techniques for identifying
the number of clusters such as a classical geometric method, a
likelihood ratio test for clusters, and so on.
One of the well-known criteria is the Silhouette width

(Rousseeuw, 1987 [82]) of a data point, which is basically com-
puted based on dissimilarities between a given data point and
other data points in the same cluster and dissimilarities between
it and other data points in a different cluster. Pollard & van der
Laan (2002) [79] applied the average Silhouette for identifying
clusters in gene expression data.
Mirkin (2013) [71] discussed the Gap statistic (Tibshirani et

al, 2001 [94]) and Jump statistic (Sugar & James, 2002 [89]) as
other criteria based on cluster dispersion. Yan & Ye (2007) [106]
modified the Gap statistic by changing slightly the definition of
within-cluster homogeneity. While the original Gap statistic uses
the logarithm of the within-cluster homogeneity, Mohajer et al.
(2010) [72] suggested not applying the logarithm to it.
Pham et al. (2005) [78] proposed another criterion for select-

ing L′, which was computed as the ratio of two cluster distortion
values at L and L−1. When the curve of criterion scores is smooth
with no explicit minimum point (i.e., ‘elbow’), it is not possible
to determine the optimal number. In order to solve this problem,
Salvador & Chan (2004) [84] developed a method for selecting an
optimal number as the intersection of two straight lines approxi-
mating the left and right sides of the curve, respectively.
5.2.3 Mixture model
A finite mixture model consisting of L components can be used

for partitioning a data set, in which the number of components is
usually assumed to be the number of clusters. McLachlan (1987)
[65] tried to estimate the number of components in a Gaussian
mixture model (GMM) from the observed data by using the like-
lihood ratio test statistic (LRTS) computed in a framework of
Bootstrap sampling. A similar technique was also explored by
McLachlan & Khan (2004) [66] (see also Lo et al., 2001 [64] for
another statistical test).
Another typical strategy for determining the number of compo-

nents in a mixture model is to apply a model selection technique
based on information criteria such as BIC (Bayesian information
criterion), AIC (Akaike information criterion) and so on. For in-
stance, a penalty for complexity of the model (i.e., for the num-
ber of parameters in it) is incorporated into the BIC, which can
be useful for selecting an optimal mixture model. An actual pro-
cedure of identifying the optimal number of components based
on the BIC in a clustering application was provided by Fraley &
Raftery (1998) [38]. Also, various other criteria were explored
by Bozdogan(1992) [16], Banfield & Raftery (1993) [7] and so
on. Roberts et al.(1998) [80] applied the Bayesian approach to
computation of the probability distribution in the GMM, which
led to the likelihood including explicitly the number of parame-
ters in the model. Similarly, Biernacki et al.(2003) [12] proposed
the ‘integrated complete likelihood (ICL)’ approximating BIC as
a criterion for determining L′. Because the BIC tends to overes-
timate the value of L′, Chiu et al. (2001) [27] attempted to merge
clusters based on a distance defined by a log-likelihood function
after estimating the ‘coarse’ number of clusters from the BIC.
More recently, Pan & Shen (2007) [74] tried to modify the BIC
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for estimating L′ in ‘penalized’ model-based clustering.
Also, Xu (1997) [102] explored the method of estimating L′ in

a Bayesian Ying-Yang (BYY) machine, in which a term includ-
ing L was incorporated into its objective function for computing
the maximum likelihood of a GMM (see also Hu & Xu, 2004,
[50] for model selection based on the BYY machine).
Basically, there are many measures for assessing the number of

components in mixture models (see Chapter 6 in McLachlan &
Peel, 2000 [67]). Such measures can be applied to the problem of
determining L′ according to the model selection procedure. For
example, Bouguila & Ziou (2007) [15] employed MML (mini-
mum message length) for estimating L′ in a mixture of general
Dirichlet distributions.
Another approach for estimating L′ in the framework of GMM

is to keep ‘rivals’ away from the ‘winner’ to which a data point is
allocated in the EM algorithm, which can be considered as a tech-
nique of ‘rival penalized competitive learning (RPCL)’, which
was used for estimating L′ by Xu et al.(1993) [104]. Xu (1998)
[103] extended the algorithm for clusters with more complicated
shapes. More recently, Cheung (2003) [24] and Cheung (2005)
[25] proposed techniques for fading out redundant densities from
a density mixture based on a similar mechanism.
Welling & Kurihara (2009) [100] proposed clustering algo-

rithms that have a stopping rule based on a cost function including
L for a GMM, which yields L′ automatically. Also, the hierarchi-
cal Dirichlet process (HDP) model (Teh, et al., 2006 [92]) allows
the number of latent topics to be estimated from a given document
set. If the latent topics inherent in the set are used for producing
clusters of words or documents, then L′ can be considered to be
automatically given by the HDP model (see Kishida, 2013 [56]).
Rather than assuming a Gaussian distribution, Herbin et al.

(2001) [48] employed a nonparametric Parzen-Rosenblatt win-
dow method for kernel density estimation and applied the es-
timated probabilistic distribution function for segmenting the
dataset into some areas. Cuevas et al. (2000) [28] provided an
algorithm for estimating L′ based on density obtained from a ker-
nel function, and Girolami(2002) [42] explored an unsupervised
clustering based on a kernel function and suggested that L′ may
be determined by examining the distribution of eigenvalues of the
kernel matrix.
5.2.4 Stability-based approach
Jain & Moreau(1987) [52] made one of the earliest attempts

at applying a ‘stability’ concept for determining L′ under the as-
sumption that partitioning with L′ is stable whereas partitioning
with other numbers of clusters is not stable. Actually, the stabil-
ity is measured by an index computed from clustering results for
a set of subsamples extracted from the target dataset. In [52], an
index based on within-cluster dispersion was calculated from the
results of k-means clustering for Bootstrap samples.
As the index, Bel Mufti et al.(2005) [8] examined experimen-

tally a stability measure developed by Bertrand & Bel Mufti
(2006) [11], which is based on Loevinger’s measure. Also, Pas-
cual et al.(2008) [75] used mutual information (MI) for measuring
stability between two clustering results, and similarly, Volkovich
et al.(2008) [96] and Volkovich et al.(2011) [97] employed dis-
tance measures between two probabilistic distributions for it.

In Levine & Domany (2001) [60], a cluster validity measure
was computed from an N × N matrix, each element of which in-
dicates whether the ith data point and jth data point belong to
the same cluster or not (i.e., ‘membership’). Similar membership
matrices were used in Ben-Hur et al. (2002) [10] and Ben-Hur &
Guyon (2003) [9] for determining L′.
There have been many attempts at measuring the stability in

a framework of cross-validation which is a standard technique
in supervised learning. For example, Roth et al.(2002) [81] di-
vided the entire dataset randomly into two parts and executed a
clustering algorithm for them. After that, the result from the sec-
ond part was used for predicting cluster membership in the first
part, and the stability was measured based on the accuracy of the
prediction. Similar cross-validation frameworks were adopted by
Dudoit & Fridlyand (2002) [33] (in which Fowlkes and Mallows
coefficient was used as one of the stability indices), Tibshirani
& Walther (2005) [93] (their technical report published in 2001
proposed a metric ‘prediction strength’), and Lange et al. (2004)
[59] (in which a modified misclassification error was used). Also,
Wang(2010) [99] and Fang & Wang(2012) [34] explored inten-
sively the cross-validation approach for determining L′.
By executing repeatedly a k-means algorithm with changing

random initialization, it is possible to obtain a set of multiple
clustering results, which leads to so-called ‘consensus cluster-
ing’. If the consensus clustering is also repeated with different
values of L, then L′ can be determined similarly. Based on the
strategy, Kuncheva & Vetrov (2006) [58] tried to estimate L′ on
data with various cluster shapes (e.g., spiral or half rings), and
Steinley (2008) [88] also proposed a procedure for selecting L′

from the result of consensus clustering.
Chaea et al.(2006) [22] applied five agglomerative clustering

algorithms to subsamples under assumptions of different values
of L, and selected L′ based on similarity between clustering re-
sults of 10 possible pairs of the algorithms.
5.2.5 X-means and related approaches
The k-means clustering can be interpreted as a special case of

model-based clustering, and it is possible to combine a criterion
like BIC with standard k-means algorithms. Actually, Pelleg &
Moore (2000) [77] developed an x-means clustering algorithm
with estimating L′ based on BIC, and also Ishioka (2005) [51] ex-
tended it by adding a post-processing after executing the x-means
algorithm in order to merge some over-fragmented clusters.
Several extensions of the k-means algorithm with a function of

estimating L′ have been developed. For example, the g-means
algorithm (Hamerly & Elkan, 2003, [45]) applies a statistical
test for determining whether recursive partitioning is stopped
or not, the ik-means algorithm (Mirkin, 2005, [69]; Chiang &
Mirkin (2010) [26]; Mirkin, 2013, [71]) tries to find desirable
initial seeds based on ‘anomalous pattern (AP)’ method, and the
pg-means algorithm (Feng & Hamerly, 2007 [36]) employs the
Kolmogorov-Smirnov test for the model selection. Also, Fischer
(2011) [37] explored another penalty function.
5.2.6 Fuzzy clustering
In the fuzzy clustering algorithm, automatic estimation of L′

has been attempted by using validity measures such as ‘fuzzy hy-
pervolume’ and ‘partition density’ (Gath & Geva, 1989 [41]), or
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‘robust cluster similarity’ (Frigui & Krishnapuram, 1996, [39]),
which are computed in the framework of fuzzy clustering. Es-
pecially, algorithms for estimating the number of objects with
complicated shapes in image data have been developed in fuzzy
clustering. For example, the ‘robust competitive agglomeration
(RCA)’ algorithm (Frigui & Krishnapuram, 1999, [40]) has a
step for removing a cluster with low degree of fuzzy member-
ship based on a threshold. Also, Kaymak & Setnes (2002) [54]
estimated L′ by merging two clusters between which similarity is
higher than a threshold based on a ‘volume prototype’ represent-
ing a complicated shape. Devillez et al.(2002) [29] developed a
complicated procedure including hierarchical clustering in order
to apply fuzzy clustering to identification of clusters with compli-
cated shapes. In this procedure, ‘real’ clusters with complicated
shapes are automatically identified from the dendrogram.
On the other hand, Sun et al.(2004) [90] applied a standard pro-

cedure for finding L′ to the fuzzy clustering algorithm, in which
a new index based on a linear combination of compactness and
separation of clusters was used for measuring the validity of each
cluster. Also, Li & Shen (2010) [63] introduced a simple stopping
rule based on a threshold for the particular purpose of estimating
segmentation of an image by fuzzy clustering.
5.2.7 Genetic algorithm
When applying a non-parametric approach such as a genetic

algorithm (GA), some researchers attempted to determine con-
currently L′ and optimal partitioning of a dataset according to
an objective criterion related to the validity of the resulting clus-
ters. In the case of GA, the clustering task is sometimes called
‘GCUK-clustering’ (e.g., see Bandyopadhyay & Maulik, 2002,
[2]) where ‘GCUK’ is an abbreviation of ‘genetic clustering for
unknown k’ and ‘k’ denotes the number of clusters. For instance,
Bandyopadhyay &Maulik(2001) [1] used a variable string length
genetic algorithm (VGA) for it based on the Davies-Bouldin in-
dex and Dunn’s index (see also Bandyopadhyay & Maulik, 2002,
[2]). Also, Kärkkäinen & Fränti (2002) [53] tried to estimate L′

in executing the randomized local search (RLS) by employing
Davies-Bouldin index and variance-ratio F-test as criteria.
On the other hand, in the case of Hruschka & Ebecken(2003)

[49], the ‘classic’ Silhouette criterion was used for selecting L′

in executing a GA algorithm. Especially, Sheng et al.(2005) [86]
proposed to use a weighted sum of several normalized cluster va-
lidity functions for determining L′.
Bandyopadhyay & Saha (2008) [3] introduced a new cluster

validity function incorporating directly L in the framework of
GA. The function was called ‘Sym’, which was also used by com-
bining it with the well-known Xie-Beni index in Saha & Bandy-
opadhyay (2010) [83]. Such ‘multi-objective’ GA algorithms
were explored also by other researchers (e.g., Banerjee, 2009 [4];
2010 [5]; 2012 [6]).
Actually, Casillas et al.(2003) [21] applied the GA and a stop-

ping rule by Caliński & Harabasz (1974) [17] to the problem of
partitioning a small set of documents (up to 100 documents).
5.2.8 Others
In developing techniques of spectral clustering, automatic de-

termination of L′ has been explored. Because spectral clustering
tries to find approximately an optimal cut of a graph (its nodes are

data points and an edge implies similarity between two nodes) by
solving an eigenvalue problem, elements of the eigenvectors can
be a clue for selecting L′ (see Zelnik-Manor & Perona (2005)
[110] or Xiang & Gong, 2008, [101] for actual algorithms). Also,
Costa and Netto (1999) [30] tried to incorporate automatic es-
timation of L′ into a SOM (self-organizing map)-based cluster-
ing algorithm. Note that some algorithms posteriorly determine
the number of clusters as an output from the execution under a
predetermined parameter other than L′ (e.g., the leader-follower
clustering algorithm or the BIRCH algorithm).
There have been some attempts at estimating L′ for special-

type data such as remote-sensing data (Cao et al., 2007, [20]),
time series data (Vasko & Toivonen, 2002 [95]), mathematical
function or curves (Li & Chiou, 2011, [62]), and so on. Also,
some methods tailored to image data were proposed (e.g., Wang
et al., 2009, [98] or Patil & Jondhale, 2010, [76]). Especially,
C3M (cover-coefficient-based concept clustering methodology)
(e.g., Can & Ozkarahan, 1984 [18]; 1990 [19]) is a special al-
gorithm for document clustering, which can predict L′ from the
‘cover coefficient’ measuring the degree to which a given docu-
ment is ‘covered’ by other documents.

6. Conclusion
This paper tried to develop an algorithm for hierarchical multi-

way divisive clustering (HMDC) in which the number of parts
inherent in each node of a tree is automatically estimated by a cri-
terion based on similarities within and between clusters. The ex-
periment showed that the HMDC algorithm generated good clus-
tering results.
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