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Empirical Comparison of External Evaluation Measures
for Document Clustering by Using Synthetic Data

Kazuaki Kishida1,a)

Abstract: In order to develop effective and efficient techniques or algorithms for document clustering, it is indispens-
able to explore methodologies for evaluating experiments in which clustering validity has to be measured precisely.
This paper reports on an experimental result of empirically comparing external evaluation measures for unsupervised
clustering. For computing actual values of purity, inverse purity, F-measure, mutual information, V-measure, Jaccard
coefficient, Rand statistic, adjusted Rand index, Fowlkes-Mallows coefficient, BCubed, and van Dongen criterion, a
spherical k-means algorithm was repeatedly executed for synthetic data, which were randomly generated under some
assumptions on term occurrences in documents. Based on the values obtained by the clustering operations, the experi-
ment revealed ‘closeness’ between measures in scoring the appropriateness of clustering results. Also, changes of the
values with decrement or increment of generated clusters were analyzed to examine the effectiveness of the measures
in a situation in which the number of generated clusters was different from that of ‘true’ topic classes inherent in the
document set.

Keywords: Document clustering, Evaluation measure, Generation of synthetic data

1. Introduction
Document clustering (DC), by which a topically heterogeneous

set of documents (news articles, books, web pages, and so on)
is partitioned into several homogeneous subsets in an unsuper-
vised manner, plays an important role in text mining applications.
Hence, many sophisticated algorithms or techniques for DC have
been explored, and experiments for examining their effectiveness
have been reported in the literature.
However, evaluation measures used for examining the validity

of clustering results often differ between experiments (e.g., mu-
tual information, F-measure, purity, Rand statistic, and so on),
which makes it difficult to compare the results. In order to un-
derstand precisely the advantages or disadvantages of individual
DC methods in such situations, it is necessary to have sufficient
knowledge of the nature or characteristics of the evaluation mea-
sures in scoring the appropriateness of each clustering result.
This paper reports on an experiment that statistically compared

the values of some external evaluation measures by using clus-
tering results obtained from a spherical k-means algorithm. The
comparison yields a deeper insight on the measures and will be
useful for developing more effective DC methods.
The target document sets employed for the experiment were

artificially generated from a model including several parameters
for determining the random occurrence frequency of each term in
a document, thus enabling the ‘behavior’ of the measures to be
observed under various conditions of the target document sets by
intentionally adjusting the parameters. For instance, it was pos-
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sible to control the degree to which better clustering results were
easily obtained for the synthetic data by the algorithm. Also, the
numbers of documents belonging to topic classes in the artificial
document sets can be changed in order to examine how values of
the measures vary in situations where documents are distributed
equally or unequally across topic classes. Although such syn-
thetic data have often been exploited in research on evaluation
measures for clustering, the datasets in the experiment were espe-
cially tailored to DC problems by a relatively complicated model.
The rest of this article is organized as follows. First, previous

researches on evaluation methodologies for unsupervised cluster-
ing are reviewed. Next, some principal evaluation measures based
on an external criterion provided by human experts are discussed.
After an explanation on the model used for randomly generating
artificial document sets, the results of an experiment to compare
the evaluation measures are reported and discussed.

2. Related Work
The goodness or validity of clustering results can be evaluated

according to internal or external criteria. This paper focuses on
only measures for the external evaluation. Although ‘indirect’
external evaluation in DC situations may be feasible (e.g., if a
distributed information retrieval system includes a DC module
for dividing the target document set into topically homogeneous
parts in its process, then the clustering validity can be indirectly
inferred from the search performance of the system), the indirect
method is not discussed here. For ‘direct’ external evaluation,
‘ground truth’ clusters obtained by a method (e.g., annotation by
human experts) are usually employed.
Actually, many external measures (or metrics) for general-

purpose unsupervised clustering have been proposed and ex-
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plored (see Wu et al., 2009 [20] and Kremer et al., 2011 [11],
who enumerated them exhaustively). Brun et al.(2007) [3] cal-
culated Kendall’s correlation between several external measures
from clustering results obtained iteratively for synthetic data,
which were generated based on six simple models. The external
measures are Hubert’s correlation, Rand statistic, Jaccard coef-
ficient and Fowlkes & Mallows (FM) coefficient. As clustering
algorithms, k-means, fuzzy c-means, self-organizing map, hier-
archical agglomerative clustering (HAC) and probabilistic clus-
tering based on an EM algorithm were employed. Also, Song &
Zhang(2008) [18] compared other external evaluation measures
(purity, cluster-based cross entropy, class-based cross entropy, V-
measure, homogeneity, completeness and variation of informa-
tion) by using simple synthetic data.
Wu et al.(2009) [20] intensively examined 13 evaluation mea-

sures (entropy, purity, F-measure, variation of information, mu-
tual information, Rand statistic, Jaccard coefficient, FM coeffi-
cient, two kinds of Hubert’s statistic, Minkowski score, classifica-
tion error and van Dongen criterion) within the scope of assessing
the validity of k-means clustering, which tends to produce clus-
ters with relatively uniform sizes. Both synthetic and real datasets
were used in the experiment, which suggested the suitability of
the normalized van Dongen criterion.
On the other hand, it is possible to assess the appropriate-

ness of the external measures based on ‘formal’ conditions. For
instance, Meilă(2005) [14] discussed characteristics of external
measures according to some mathematical properties such as
symmetry, additivity, convex additivity and scale. Also, Rosen-
berg & Hirschberg(2007) [17] extended the list of desirable prop-
erties proposed by Dom(2001) [5], and examined whether sev-
eral external measures satisfy them or not. More recently, Amigó
et al.(2009) [1] focused on four formal constraints (which con-
cern cluster homogeneity, cluster completeness, ‘miscellaneous’
clusters, and clusters size versus quantity), and reported that only
BCubed passed the test of constraints.
There are some external measures not covered by the above

empirical and analytical studies. For instance, the fuzzy set the-
ory has been applied to the definition of external measures (e.g.,
see Campello, 2010 [4]). Also, Kremer et al.(2011) [11] pro-
posed a new measure tailored to evaluation of data stream clus-
tering, and Günnemann et al.(2011) [6] discussed some external
measures (‘RNIA’ and ‘E4SC’) to assess results of subspace clus-
tering. Further, Hassani et al.(2013) [8] designed a new measure
for evaluating effectively subspace clustering of data stream. In
Amigó et al.(2011), a novel combination of two measures, which
can be used instead of F-measure, was developed (it was named
‘unanimous improvement ratio (UIR)’).

3. External Evaluation Measures for Unsuper-
vised Clustering

According to Amigó et al.(2009) [1], external evaluation mea-
sures for unsupervised clustering can be divided into three cate-
gories: 1) set matching, 2) pair counting, and 3) entropy. Sup-
pose that a collection of clusters, which is denoted by C =
{C1,C2, . . . ,CL}, was obtained by applying a clustering algorithm
to a document set in which a topic label is assigned to each docu-

ment by a human expert beforehand. The labels allow us to parti-
tion the set into topic classesA = {A1, A2, . . . , AH}, which can be
used as a correct answer to the clustering operation (i.e., ‘ground
truth’ classes). In this paper, nmk, nm and nk denote the number
of documents belonging to both Am and Ck, the number of doc-
uments in Am and the number of documents in Ck, respectively
(m = 1, . . . ,H; k = 1, . . . , L).

3.1 Measures by set matching
By matching two sets Ck and Am, precision and recall

can be computed for each pair, which lead to two mea-
sures, called purity and inverse purity, respectively. More
specifically, purity [21] is defined as a weighted average of
the maximum values of precision in clusters, namely pur =∑L
k=1(nk/N)max{m=1,...,H}(nmk/nk). In contrast, inverse purity is

computed by invp =
∑H
m=1(nm/N) max{k=1,...,L}(nmk/nm) based on

the recall ratio of each topic class [1].
For a clustering result, F-measure (or ‘FScore’) [12] can be

similarly defined as F =
∑H
m=1(nm/N)max{k=1,...,L} fh(Am,Ck)

where fh(Am,Ck) denotes the harmonic mean of precision and
recall for Am and Ck. Actually, fh(Am,Ck) = (2xy)/(x + y) where
x = nmk/nm and y = nmk/nk.
On the other hand, Amigó et al.(2009) [1] recommended em-

ploying BCubed measures, which are composed of precision and
recall versions defined as Bp = N−1

∑
k
∑
m n2mk/nk and Br =

N−1
∑
m
∑
k n2mk/nm, respectively. The harmonic mean of them can

be computed as BCF = (2× Bp× Br)/(Bp+ Br), which is called
‘BCubed-F’ in this paper.

3.2 Measures by pair counting
Generally, relatedness between two collections of subsets (i.e.,
C and A) can be measured by interpreting the collection as a set
of edges in a graph when individual elements are linked to some
other elements. For instance, suppose that C is a graph in which
two documents are connected by an edge if and only if they be-
long to the same cluster. The number of edges (i.e., pairs) in C is
computed as |ΓC| = ∑Lk=1 nkC2 = ∑k nk(nk − 1)/2 = (∑k n2k −N)/2
where ΓC means a set of edges in C. Similarly, it becomes that
|ΓA| = (∑m n2m − N)/2 forA. Because cardinality of the intersec-
tion of ΓC and ΓA amounts to a = (

∑
k
∑
m n2km−N)/2, the Jaccard

coefficient can be defined as Jacrd = a/(|ΓC| + |ΓA| − a) [15]. As
similar measures based on pair counting, the Rand statistic and
Fowlkes-Mallows coefficient are well known, which are given by
the following formulas, Rand = 1 − [(|ΓC| + |ΓA| − 2a)/(N(N −
1)/2)] and FM = a/

√|ΓC||ΓA|, respectively [15]. Another form
of the Rand statistic is

ARI =
a − |ΓC||ΓA|/(N(N − 1)/2)

|ΓC|/2 + |ΓA|/2 − |ΓC||ΓA|/(N(N − 1)/2) ,
which is usually called the adjusted Rand index (ARI) [15].

3.3 Entropy-based measures
If conditional probability P(Am|Ck) is operationally defined as

P(Am|Ck) = nmk/nk, then it is possible to calculate entropy for a
given cluster such that Ek = −∑Hm=1(nmk/nk) log(nmk/nk) accord-
ing to information theory. Thus ‘overall’ entropy can be com-
puted as a weighted average, namely En =

∑L
k=1(nk/N)Ek [21].
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Another information theoretic measure for gaging closeness
between two sets is mutual information (MI),

MI(C,A) =
H∑
m=1

L∑
k=1
P(Am,Ck) log

P(Am,Ck)
P(Am)P(Ck)

,

where P(Am), P(Ck) and P(Am,Ck) are empirically estimated
by nm/N, nk/N and nmk/N, respectively *1. If C is com-
pletely independent of A, then mutual information MI(C,A)
amounts to zero, which is the minimum. In contrast, the max-
imum of MI is min[E(C), E(A)] where E(C) is entropy of the
set C, namely E(C) = −∑k P(Ck) log P(Ck), and E(A) is de-
fined similarly. Hence, normalized mutual information (nMI),
which takes a value in [0, 1], is usually employed for evaluat-
ing clustering results. Because MI(C,A) is bounded by some
quantities as MI(C,A) ≤ min[E(C), E(A)] ≤ √E(C)E(A) ≤
[E(C) + E(A)]/2 ≤ max[E(C), E(A)] ≤ E(C,A) where
E(C,A) = −∑m∑k(nmk/N) log(nmk/N), it is feasible to consider
five types of nMI such as nMImin = MI(C,A)/min[E(C), E(A)],
nMIsqrt = MI(C,A)/√E(C)E(A), nMIsum = 2MI(C,A)/[E(C)+
E(A)], nMImax = MI(C,A)/max[E(C), E(A)] and nMI joint =
MI(C,A)/E(C,A) (see [19] for the source of each measure).
Also, V-measure [17] is defined as the harmonic mean of two

quantities computed based on information theory. The first quan-
tity is called homogeneity, which is defined as

homo =

⎧⎪⎪⎨⎪⎪⎩
1, if E(A,C) = 0
1 − E(A|C)/E(A), otherwise

,

where E(A|C) = −∑k∑m(nmk/N) log(nmk/nk), and the second
one is completeness, which is given by

comp =

⎧⎪⎪⎨⎪⎪⎩
1, if E(C,A) = 0
1 − E(C|A)/E(C), otherwise

,

where E(C|A) = −∑m∑k(nmk/N) log(nmk/nm). Actually, V-
measure is computed as Vm = (2×homo×comp)/(homo+comp).

3.4 Other measures
A normalized version of the van Dongen criterion (Wu et al.,

2009 [20]) is defined as

vDon =
2N −∑kmax{m=1....,H} nmk −∑mmax{k=1,...,L} nmk

2N −max{k=1,...,L} nk −max{m=1,...,H} nm .

Note that a smaller value of the criterion indicates better results
of clustering, and vice versa.

4. Framework of Experiment
4.1 Generation of synthetic data
For empirically comparing external evaluation measures of

DC, synthetic data generated randomly under several assump-
tions were used as target document sets in the experiment because
the ‘ease’ or ‘difficulty’ of producing valid clustering results can
be adjusted by shifting parameters in the process of generating
synthetic data, which may yield deeper insights on the evaluation.
Of course, it would be better to employ real document data (e.g.,
the RCV1 test collection [13]) to obtain more reliable findings on

*1 If nmk = 0, then it is assumed that P(Am,Ck) = P(Am)P(Ck).

external evaluation measures. The simulation in this experiment
should be considered as a preliminary step for understanding suf-
ficiently the characteristics of the measures.
4.1.1 Random selection of term frequency
The model for generating the synthetic data in this experiment

was constructed by modifying and extending a model in Jing et
al.(2007) [9], which was originally exploited for examining per-
formance of a subspace clustering technique. Basically, after pre-
defining the number of different index terms (denoted by M), the
numbers of ‘ground truth’ classes (i.e., H) and the numbers of
documents belonging to H classes (i.e., nm; m = 1, . . . ,H), re-
spectively, occurrence frequencies of M terms in each document
were randomly determined under some assumptions on the prob-
abilistic distributions used for the random generation. The num-
ber of classes were always fixed to 10 (i.e., H = 10) in this exper-
iment.
The random generation was done by selecting a real value from

the Normal distribution N(μ, σ). Before the selection, the set of
M terms was divided into M′ ‘specific’ terms and M′′ ‘general’
terms (M′ and M′′ were also fixed in all generations such that
M′ = 140 and M′′ = 60, i.e., M = 200). In the case of general
terms, the value of parameter μ for a particular term was sampled
from N(μg, σg) where μg = 3.0 and σg = 3.0 in this experiment
*2. The randomly selected value of parameter μ for term t j is
denoted by μ j here ( j = M′ + 1, . . . ,M). For each document, fre-
quencies of M′′ general terms were sequentially generated from
N(μ j, σg). Actually, after real number x was obtained from the
Normal distribution, term frequency was determined as �x�. Also,
if x < 0, then term frequency was always set to zero *3.
The system of generation for specific terms was more compli-

cated because each specific term was assumed to belong inher-
ently to one or more classes in A = {A1, . . . , AH}. The classes of
each term were randomly determined by H Bernoulli trials with
parameter p = 0.1 (i.e., the probability that the term was assigned
to a class was 0.1). Namely, the probability that a specific term
belongs to x classes follows a binomial distributionB(H, p). Note
that x was intentionally changed to one when x = 0 by allocating
the term randomly to a particular class.
After assigning each specific term to one or more classes, pa-

rameters μ j ( j = 1, . . . ,M′) were determined by Normal distri-
butions in a similar way to that for general terms. In the case
of specific terms, two values must be selected as μ j (denoted by
μ̂ j and μ̃ j, respectively). The value of μ̂ j for documents in the
class to which term t j belongs was sampled fromN(4.0, 3.0). In-
stead, N(0.5, 1.0) was used for sampling a value of μ̃ j which is
a parameter for the other classes. Finally, the frequency of t j in
each document was again selected from N(μ̂ j, 5.0) or N(μ̃ j, 1.0)
depending on the class to which the target document belongs
( j = 1, . . . ,M′).
4.1.2 Incorporating error factors
In order to control ‘difficulty’ of DC, an error factor ε was in-

*2 These values of M′, M′′, μg and σg were arbitrarily selected without any
special reason. Other parameters described below were set in the same
way. Inevitably, the experiment should be considered as a case study.

*3 Note that the operation was applied to all random generations of term
frequency in this experiment.
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troduced in the process of generating synthetic data. Namely,
after all term frequencies in every document were randomly se-
lected by the procedure explained above, each frequency y was
further changed to �y + ε� where ε was a negative or positive real
number sampled from N(μη, 1.0) for each y. If parameter μη is
large, then it becomes more difficult to correctly partition docu-
ments into {A1, . . . , AH} because differences of term frequencies
between specific and general terms or between specific terms be-
longing to the class and not to it would become small. In this ex-
periment, values of μη were selected from {0.0, 0.5, 1.0, 1.5, 2.0}
for respective generation of the synthetic data (0.0 is the easiest,
and 2.0 is the most difficult).
The overall procedure for generating the synthetic data is sum-

marized in Figure 1.

Set: The number of classes (H = 10), the number of specific terms
(M′ = 140), the number of general terms (M′′ = 60), the num-
ber of documents (N = 10), the number of documents in classes
(n1, . . . , nH), the parameter of Bernoulli trials for determining
whether a specific term belongs to the class or not (p = 0.1),
and parameter μη for incorporating error factors.

1) Sample parameter μ j from Normal distribution N(3.0, 3.0) for
general term t j ( j = M′ + 1, . . . ,M where M = M′ + M′′).

2) Determine whether t j belongs to the mth class or not by compar-
ing a randomly generated number in [0, 1] with p (m = 1, . . . ,H)
for specific term t j ( j = 1, . . . ,M′).

3) Sample μ̂ j and μ̃ j from N(4.0, 3.0) and N(0.5, 1.0), respectively,
for specific term t j ( j = 1, . . . ,M′).

4) Allocates arbitrarily each document di to a class so that the result-
ing distribution becomes identical to n1, . . . , nH (i = 1, . . . ,N).

5) For t j in di ( j = 1, . . . ,M; i = 1, . . . ,N), sample its frequency
from N(μ j, 3.0) (if t j is a general term), N(μ̂ j, 5.0) (if t j is a spe-
cific term belonging to the class of di), or N(μ̃ j, 1.0) (if t j is a
specific term not belonging to the class of di).

6) For t j in di ( j = 1, . . . ,M and i = 1, . . . ,N), sample real number ε
from N(μη, 1.0) and add it to the term frequency (−∞ < ε < ∞).

• Note: For real number x (> 0), term frequency is set to �x�, and if
x < 0, then term frequency is set to zero.

Fig. 1 Algorithm for randomly generating a document set

4.2 Clustering operation
In this experiment, only a spherical k-means (sk-means) algo-

rithm was used in all clustering operations. For executing the sk-
means clustering, the top L documents in the sequence were au-
tomatically chosen as seeds, and the well-known Hartigan-Wong
algorithm [7] was used to find an optimal allocation of documents
to clusters (see Appendix). Note that each element of document
vectors was calculated as a simple tf-idf weight, which was ac-
tually xi j log(N/n j) where xi j denotes occurrence frequency of
t j in di and n j indicates the number of documents with xi j > 0
(i = 1, . . . ,N; j = 1, . . . ,M), and that any feature selection was
not executed in the experiment.
The number of documents was always set to 100 (i.e., N =

100), and two types of distribution of documents over classes
were supposed:
( 1 ) n1 = n2 = . . . = nH = 10, and
( 2 ) n1 = 50, n2 = 20, n3 = n4 = n5 = 5, n6 = . . . = nH = 3,
where H = 10 as mentioned before. Whereas the first type indi-
cates a balanced distribution, the distribution of the second type

Table 1 Averages of measures: Balanced (L = 10)

Error factor: μη
Measure 0.0 0.5 1.0 1.5 2.0
pur .867 .834 .716 .431 .301
invpur .955 .941 .906 .749 .567
F .886 .857 .749 .449 .302
BCF .890 .858 .752 .452 .296
Rand .965 .956 .919 .765 .698
ARI .817 .771 .622 .242 .068
Jacrd .728 .671 .508 .210 .107
FM .841 .802 .681 .382 .222
NMI-min .950 .931 .874 .604 .339
NMI-sqrt .926 .901 .818 .504 .274
NMI-sum .925 .901 .815 .494 .267
NMI-max .903 .873 .765 .425 .226
NMI-joint .866 .825 .697 .337 .157
Vm .925 .901 .815 .494 .267
vDon .106 .134 .229 .541 .757
Note: Averages of 1000 iterations when H = 10.

is skewed. In this experiment, the clustering operation was exe-
cuted independently for the two types of distribution (which are
called ‘balanced’ and ‘skewed’ in this paper).
In each execution of the sk-means clustering, the number of

generated clusters (i.e., L) was selected from { 3, 5, 10, 15, 20,
30, 40 }, respectively. Since H = 10, the clustering operation with
L = 10 would be normal. However, in the case of DC, the ‘true’
number of clusters (i.e., the number of classes) is often unknown.
Based on the assumption that H is unknown, the experiment tried
to examine the effects of conditions L < H and L > H by varying
the number of clusters predefined in the sk-means algorithm.

4.3 Iteration of generating data and clustering
In order to compare empirically the external evaluation mea-

sures for various clustering results, it was necessary to iterate a
pair of (1) generating N documents and (2) clustering them, and
to compute the measures for each pair. Hence, the pair of oper-
ations was iterated 1000 times independently for a given set of
parameters, and the average of values in each run with 1000 iter-
ations was calculated for every measure in the comparison.

5. Results
5.1 Closeness between measures
Table 1 shows average values of the external evaluation mea-

sures obtained by repeating the 1000 iterations with varying pa-
rameter μη on error factor (i.e., μη = 0.0, 0.5, 1.0, 1.5, 2.0) for
the ‘balanced’ document distribution when L = 10 and H = 10.
As expected, all measures except the van Dongen criterion de-
crease monotonically as μη increases (i.e., as clustering becomes
more difficult due to the error factor). Similarly, the van Dongen
criterion increases monotonically, which indicates that clustering
validity becomes lower as μη increases.
Consistent with the theory, nMI versions maintain the descend-

ing order of nMImin ≥ nMIsqrt ≥ nMIsum ≥ nMImax ≥ nMI joint
in Table 1. In the case that μη = 2.0, the valuers of inverse pu-
rity and Rand statistic remain relatively high compared with other
measures.
If a set of values of measures in an iteration is considered as

an observed record, then the Pearson product-moment correlation
coefficient r within 1000 records can be computed from the data
used to compile Table 1. By converting the van Dongen criterion
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to 1 − vDon, it is possible to group the external evaluation mea-
sures based on correlation r. Figure 2 shows a dendrogram pro-
duced by applying a hierarchical clustering algorithm (average-
linkage) to data of μη = 1.0 (hclust() function of R [16] was em-
ployed after each score of r was converted as 1 − r). Clearly,
three main groups, namely {BCF, nMI joint, nMIsqrt, nMIsum,Vm},
{Jacrd, ARI, FM} and {F, nMImax, vDon}, can be observed in the
dendrogram. The correlation within each group was very high as
shown by the left-side scale of 1 − r in the figure.
It would be easy to conjecture that the Jaccard coefficient, ARI

and FM coefficient are closely gathered because they are com-
puted from pair counting. Also, three versions on nMI (nMI joint,
nMIsqrt and nMIsum) and Vm make up a group to which BCubed-
F is added. Other entropy-based measures nMImin and nMImax
are separate from this group, and in particular, nMImax is closer
to the F-measure and van Dongen criterion in the dendrogram.

Fig. 2 Dendrogram (1): Balanced (L = 10, μη = 1.0)
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Fig. 3 Values of measures by the number of clusters: Balanced (μη = 0.0)
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Fig. 4 Values of measures by the number of clusters: Balanced (μη = 2.0)

5.2 Effect of variation in the number of generated clusters
In most DC experiments, it is usually assumed that the number

of generated clusters equals the number of ‘ground truth’ classes
(i.e., L = H). However, clustering results must be evaluated
sometimes under the condition that L � H as pointed out above.
Figure 3 indicates changes of the evaluation measures with

variations in the number of clusters (L = 3, 5, 10, 15, 20, 30, 40)
when μη = 0.0 (i.e., ‘easy‘ cases). The change in many evalua-
tion measures becomes a bell-shaped curve, in which its peak is at
L = 10 or L = 15. Because H = 10, the bell-shaped curve would
be interpreted to show a valid trend. On the other hand, purity
and inverse purity change monotonically. More precisely, purity
increases and inverse purity decreases always as the number of
clusters becomes large, which is intuitive from their characteris-
tics.
However, in the case of ‘difficult’ clustering, the values of some

measures do not change like a bell-shaped curve. Figure 4 shows
the curves when μη = 2.0. In particular, all nMI versions and Vm
appear to increase monotonically with increment of generated
clusters, which implies that nMI versions and Vm may provide
a higher score for a set of ‘fragmented’ clusters in which docu-
ments from different classes are mixed. The use of nMI versions
or Vm may be risky when L > H and the values are relatively
lower.
Although other measures indicate a similar tendency, the curve

of Jaccard coefficient reaches the maximum at L = 15 as an ex-
ception. Since the peaks of ARI and BCubed-F are also at L = 20,
it is considered that measures by pair counting and BCubed-F be-
have differently with nMI versions in such situations. The ten-
dency is also observed in a dendrogram for L = 40 and μη = 2.0
(Figure 5), which was obtained in a similar way as Figure 2.

Fig. 5 Dendrogram (2): Balanced (L = 40, μη = 2.0)

5.3 Effect of biased distribution of documents
Table 2 indicates differences of averages of the external evalu-

ation measures between biased and balanced distributions when
L = 10. Since the values in the balanced distribution were
subtracted from those in the biased distribution, a positive dif-
ference in the table means that the value in the biased one is
larger. Clearly, in ‘difficult’ cases, the external evaluation mea-
sures in the biased distribution are higher possibly because larger
classes prevent the values of the measures from decreasing ex-
cessively. This tendency would be remarkable in the measures
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Table 2 Difference of values between ‘biased’ and ‘balanced’: L = 10
Error factor: μη

Measure 0.0 0.5 1.0 1.5 2.0
pur 0.009 0.015 0.078 0.268 0.315
invpur -0.163 -0.153 -0.134 -0.074 0.002
F -0.117 -0.112 -0.057 0.130 0.168
BCF -0.102 -0.089 -0.037 0.122 0.165
Rand -0.100 -0.096 -0.088 -0.030 -0.038
ARI -0.186 -0.153 -0.062 0.098 0.089
Jacrd -0.159 -0.112 0.009 0.149 0.136
FM -0.109 -0.081 -0.002 0.143 0.168
NMI-min -0.092 -0.114 -0.155 -0.089 0.013
NMI-sqrt -0.122 -0.130 -0.139 -0.029 0.048
NMI-sum -0.124 -0.131 -0.138 -0.022 0.053
NMI-max -0.149 -0.144 -0.124 0.016 0.072
NMI-joint -0.193 -0.195 -0.180 -0.021 0.038
Vm -0.124 -0.131 -0.138 -0.022 0.053
vDon 0.170 0.170 0.146 0.011 -0.033
Note: value = ‘biased’ - ‘balanced’.

by pair counting (e.g., FM and Jaccard) and BCubed-F (also F-
measure).
Figure 6 shows a dendrogram in the case that L = 10 and

μη = 1.0 for the biased distribution. The hierarchical structure
does not appear to be largely different from that in Figure 2 ex-
cept for some small changes.

Fig. 6 Dendrogram (3): Biased (L = 10, μη = 1.0)
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Fig. 7 Values of MI and entropy: Biased (μη = 2.0)

5.4 Difference of nMI versions
Only the denominator consisting of E(C) and E(A), or

E(C,A), is different between nMI versions as discussed above.
The three expectations are displayed in Figure 7 when μη = 2.0
for the biased distribution.
Because the number of classes is fixed (i.e., H = 10), E(A)

is inevitably constant in the figure. On the other hand, E(C) and

E(C,A) increase gradually as L becomes large. The boundary at
which E(C) crosses over E(A) is near the point of L = H = 10.
The curve of E(C) rises more steeply than that of E(C,A), which
means that nMImax has the effect of controlling the excessive in-
creases in the normalized value when the number of generated
clusters is larger than that of ‘ground truth’ classes (note that the
curve of an average of E(C) and E(A) can not rise more steeply
than that of E(C) because E(A) is constant).

6. Discussion
In actual clustering experiments, it is clearly unrealistic to com-

pute and examine all the external evaluation measures. A practi-
cal strategy would be to select at least one measure from respec-
tive groups of the measures, and to evaluate a clustering result
from different perspectives. The dendrograms obtained in this ex-
periment suggest that measures should be selected from at least
two groups of pair counting based measures (Jaccard coefficient,
ARI, and FM coefficient) and of nMI versions, respectively. Of
course, other measures (e.g., BCubed-F or the normalized van
Dongen criterion) may provide further evidence on the validity
or invalidity of clustering results.
When the number of generated clusters equals that of ‘ground

truth’ classes, there is no functional difference between nMI ver-
sions as an evaluation measure to be used for comparing some
clustering results. However, in the case of that L < H or L > H,
it is necessary to use nMI versions carefully. If there are many
more generated clusters than classes, then nMImax may be better
simply because its value does not increase excessively compared
with the other versions. This suggestion would be effective in the
case that L < H since E(A) is larger than E(C) in this area (see
Figure 7) and nMImax uses E(A) as its denominator.
Even though L = H, when comparing two clustering results,

one obtained from a document set with a ‘balanced’ distribution
and the other obtained from that with a ‘biased’ distribution, it
is important to pay attention to the external evaluations. For in-
stance, measures by pair counting tend to overestimate the good-
ness of clustering validity compared with nMI versions when
clustering is difficult as exemplified in Table 2.

7. Conclusion
This paper reported an experiment which attempted to com-

pare empirically external evaluation measures for unsupervised
clustering. The target datasets were randomly generated based on
a model including some assumptions on occurrence frequencies
of terms in documents. By using such synthetic data in the ex-
periment, it was possible to observe actual values of individual
measures under various states of the document set.
Based on a discussion on the observations, it was suggested

that at least one measure should be selected from measures by
pair counting and nMI versions, respectively. However, when
the number of generated clusters is largely different from that of
‘ground truth’ classes, it is necessary to pay attention to evalua-
tion by nMI versions (nMImax may be better). Also, it may be
possible that measures by pair counting overestimate clustering
validity compared with nMI versions when clustering is difficult
and the document distribution is biased.
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Because this experiment used only synthetic data as target doc-
ument datasets, further exploration based on real data is needed to
extend our knowledge on the external evaluation measures. Even
if synthetic data are employed, it may be better to enhance the
model used to generate the data. For instance, probabilistic gen-
erative models such as latent Dirichlet allocation (LDA) may be
a good tool for creating the synthetic data. Also, in this experi-
ment, only spherical k-means clustering was applied; other clus-
tering algorithms or techniques should be examined in future re-
searches.
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Appendix

A.1 Spherical K-means Algorithm
Suppose that documents are represented by M-dimensional

vectors di (i = 1, . . . , L). In the Hartigan-Wong algorithm [7],
the density of generated clusters is used as an objective crite-
rion for clustering. If the density increases by moving a docu-
ment to another cluster, then the document is reallocated to the
cluster in an iterative procedure. For the case of cosine mea-
sure, the ‘density’ of cluster Ck is reasonably defined such that
Jk =

∑
i:di∈Ck v

T
i ck/||ck || where vi ≡ di/||di|| and ck =

∑
i:di∈Ck vi.

From simple manipulation, the increase of Jk by moving docu-
ment d∗ to cluster Ck can be represented by

Δ+Jk =
( ||ck ||
||ck + v∗|| − 1

)
Jk +

2vT∗ ck + 1
||ck + v∗|| ,

where v∗ ≡ d∗/||d∗||. On the other hand, when document d∗ is
removed from cluster Ck, the decrease of Jk becomes

Δ−Jk =
(
1 − ||ck ||
||ck − v∗||

)
Jk +

2vT∗ ck − 1
||ck − v∗|| .

By changing the Euclidean distance to the cosine measure and
incorporating straightforwardly Δ+Jk and Δ−Jk into the original
Hartigan-Wong algorithm, it is possible to execute an effective
spherical k-means algorithm (first L documents were automati-
cally selected as initial seeds) [10].
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